Радиоэлектроника скачать реферат

[ книги ] [ рефераты ] [ тесты ] [ ридеры ] [ регистрация ] [ вход ]
[ новинки книг ] [ категории книг ] [ правила ]

Исследование методов разделения (уплотнения) каналов связи скачать реферат

Введение

В наши дни радиосвязь получила широкое распространение. В связи с ограниченным частотным ресурсом и огромным числом пользователей, которые используют радиочастоты, приходится применять различные методы уплотнения (разделения) каналов связи. Уплотнение линий связи экономически целесообразно осуществлять, так как это позволяет сократить затраты на организацию новых линий связи в случае отсутствия уплотнения и сократить расходы на оборудование и эксплуатацию.

Существуют, например, такие методы уплотнения каналов связи:

Частотное разделение каналов – для каждого канала связи отводится своя полоса частот так, чтобы не происходило перекрытия их частотных полос.

Временное разделение каналов – сигналы каждого канала дискретизируются и их мгновенные значения передаются последовательно по времени, таким образом, каждое сообщение передается короткими импульсами – дискретами.

Фазовое разделение каналов – по линии связи передаются сигналы одинаковой частоты и амплитуды и с различными фазами. На приемной стороне такие сигналы выделяются с помощью специальных устройств.

Пространственное разделение каналов – метод уплотнения по поляризации сигнала, ортогональные сигналы передаются по одной линии связи, что позволяет сократить полосу частот канала.

Линейное разделение каналов – или метод разделения по форме, используются линейно независимые сигналы. Такие сигналы линейно разделены и могут быть приняты в качестве канальных сигналов.

Наиболее широкое применение нашли частотное и временное разделения каналов связи. Именно эти методы уплотнения описаны в данной курсовой работе.
2. Системы с частотным и временным уплотнением каналов

2.1. Системы с частотным уплотнением каналов.

В системах с ЧРК используются канальные сигналы, частотные спектры которых располагаются в неперекрывающихся частотных полосах. Формирование канальных сигналов осуществляется при помощи АМ, ЧМ или ФМ так, чтобы средние частоты спектров канальных сигналов соответствовали средним частотам отведенных полос каждого канала. В приемной части разделение каналов осуществляется набором частотных фильтров, каждый из которых пропускает спектр частот, принадлежащий только данному канальному сигналу. На рис. 2.1.1 показаны спектры сообщений, передаваемых по трем каналам (а), спектры канальных сигналов (б) и спектр сигнала, передаваемого по линии связи (в).

Рис. 2.1.1, а



Рис. 2.1.1, б

Рис. 2.1.1, в

Для формирования канальных сигналов с неперекрывающимися спектрами осуществляется перенос спектров сообщений с помощью канальных модуляторов (Мi). На каждый модулятор подаются сообщение λk(t) и колебание sk(t)=akcos(ωkt + φk) от генератора поднесущих частот (ГЧ) (рис. 2.1.2). Канальные сигналы подаются на фильтры, полосы которых согласованы со спектрами этих сигналов. Фильтры подавляют гармоники, образующиеся в канальных модуляторах. В суммирующем устройстве складываются канальные сигналы, и групповой сигнал, спектр которого показан на рис. 2.1.1,б, модулирует несущую, вырабатываемую генератором (ГН). На выходе модулятора МΣ образуется радиосигнал с несущей ω0.

На приемной стороне после усиления и преобразования сигнала в ЛПр производится выделение группового сигнала с помощью демодулятора (Д). Групповой сигнал подается на устройство разделения, состоящее из параллельно включенных фильтров Ф1, Ф2,…, ФМ. На рис. 2.1.1,б параболами обозначены характеристики затухания фильтров. На выходе каждого фильтра выделяется соответствующий канальный сигнал вместе с продуктами взаимных помех и шумами. Канальные демодуляторы (КДi) выделяют переданные сообщения, направляемые далее получателям Пi.

Спектральные функции канальных сигналов не перекрываются, поэтому они удовлетворяют условию ортогональности:

(2.1.1)

Из (2.1.1) следует, что канальные сигналы s1(t),…, sM(t) ортогональны:

(2.1.2)

что доказывается с помощью преобразования Фурье.



Рис. 2.1.2



Определим вид оператора разделения Lk для системы с ЧРК. При использовании линейных фильтров с импульсными реакциями gk(t) и группового сигнала sΣ(t) вид оператора Lk следующий:

(2.1.3)

Отсюда находим комплексный коэффициент передачи Kk(jω) разделительного фильтра Фk:

(2.1.4)

Для идеального разделения каналов необходимо, чтобы затухание фильтров в пределах полосы спектра сигнала sk(t) равнялось нулю и было бесконечным вне пределов полосы спектра (рис. 2.1.3, а). В реальных полосовых фильтрах затухание вне полосы прозрачности конечно, имеют место переходные области δωk. Эти области определяют величину защитных интервалов между частотными спектрами соседних канальных сигналов. С учетом защитных интервалов ширину спектра 2Δƒc многоканального радиосигнала можно определить выражением:

(2.1.5)

где zkFвk=2ΔFk – полоса частот, занимаемая k-ым канальным сигналом; zk – коэффициент, определяемый способом модуляции поднесущей сообщением λk, спектр которого имеет полосу Fвk; Z – коэффициент, определяемый способом модуляции поднесущей групповым сигналом; δƒk – защитный интервал между соседними спектрами; Δƒ – нижняя граничная частота спектра многоканального сообщения.

Рис. 2.1.3, а

Рис. 2.1.3, б

Соотношение (2.1.5) позволяет определить число уплотняемых каналов в системе с ЧРК. При одинаковых значениях Fв для всех каналов и одинаковых защитных интервалах δƒ число каналов равно:

(2.1.6)

Как видно, число каналов зависит от селективных свойств фильтров, определяемых величиной δƒ, а также от видов модуляции z и Z.

Неидеальность разделительных фильтров (gk(t)≠ğk(t)) приводит к появлению межканальных переходных помех. При этом выражение (2.1.3) принимает вид:

(2.1.7)

где εk – ошибка выделения канального сигнала; коэффициент μ≈1 характеризует уровень межканальных помех. При ослаблении переходных сигналов разделительным фильтром в N раз имеем:

(2.1.8)

Отсюда, преобразуя по Фурье (2.1.7), можно определить комплексный коэффициент передачи реального фильтра k-го канала:

(2.1.9)

Это выражение позволяет сформулировать требования к затуханию разделительного фильтра k-го канала (рис. 2.1.3, б):

(2.1.10)

Выбор способов модуляции (формирования) канальных сигналов позволяет экономично использовать отведенную для передачи полосу частот. На первой ступени модуляции (модуляции поднесущих) применяют АМ, ФМ или ЧМ. Для более эффективного использования поднесущих могут применяться комбинированные способы модуляции: одна и та же поднесущая подвергается АМ сообщением источника одного канала и ФМ (ЧМ) – сообщением другого. При этом число уплотняемых каналов увеличивается, однако возникают взаимные помехи при выделении сообщений. Применение однополосной модуляции с полным или частичным подавлением одной боковой и поднесущей (ОБП) позволяет разместить в той же полосе частот примерно вдвое больше каналов.

На второй ступени модуляции (модуляции несущей) групповой сигнал модулирует несущую по амплитуде, фазе или частоте. Таким образом, существуют различные комбинации способов модуляции первой и второй ступеней, в соответствии с которыми определяется тип системы с ЧРК, например АМ-АМ, АМ-ОБП, ФМ-АМ, ЧМ-ФМ и т.п. В системах, использующих ОБП, коэффициенты z и Z, определяющие полосы спектров, равны единице, что и позволяет увеличивать число M каналов. При АМ z=Z=2, а при ФМ или ЧМ эти коэффициенты зависят от индексов модуляции и всегда больше двух.

Рассмотрим особенности построения систем с ЧРК при некоторых способах формирования канальных сигналов. Наиболее простым способом является АМ. Для этого используется амплитудный модулятор (АМд), полосовой фильтр (ПФ). На приемной стороне выделение сообщения производится синхронным детектором или обычным линейным детектором (Д). Особенности спектров сигналов на разных этапах формирования показаны на рис. 2.1.4. Асимметрия амплитудно-частотной характеристики фильтра приводит к искажениям огибающей АМ сигнала и, следовательно, к искажениям выделяемых сообщений. Снизить искажения можно путем уменьшения коэффициента модуляции. При этом снижается уровень квадратурных составляющих модулированного сигнала на входе детектора (Дk), приводящих к искажениям сигнала. Однако уменьшение коэффициента модуляции сопровождается уменьшением мощности боковых составляющих за счет увеличения мощности несущей. Недостатком АМ является большая полоса частот, занимаемая каналом (в 2 раза больше максимальной частоты сообщения). Несмотря на этот недостаток, а также относительно низкую помехоустойчивость, АМ находит применение вследствие простоты аппаратуры.

Рис. 2.1.4

Подавление одной боковой (ОБ) при передаче канальных сигналов позволяет увеличить число уплотняемых каналов в 2 раза. Вместе с тем формирование ОБ представляет достаточно сложную инженерную задачу из-за необходимости построения сложного канального фильтра. Очевидно, при подавлении ОБ возникают нелинейные искажения сигнала, обусловленные появлением на выходе линейного детектора нелинейных составляющих сообщения. Указанные недостатки, а также низкая помехоустойчивость ограничивают широкое распространение метода ОБ с неподавленной несущей.

Метод ОБП с подавленной несущей оказывается наиболее экономичным с точки зрения использования спектра частот, поскольку в этом случае ширина спектра канального сигнала ΔFk равна ширине спектра сообщения Fвk. Отсутствие поднесущей при ОБП дает возможность увеличить мощность боковой полосы и тем самым обеспечить наибольшую помехоустойчивость по сравнению с другими способами АМ. Недостатком ОБП является необходимость построения на приемной стороне генератора поднесущей. Чтобы искажения сообщения были минимальны, требуется точное совпадение поднесущих на передающей и приемной сторонах. При наличии сдвига частоты δωс в канале происходит смещение спектра восстановленного сообщения на δωс (рис. 2.1.5), приводящее к искажению сообщения. Для исключения смещения спектра необходимо обеспечивать стабильность и синхронность генераторов.

Добавлен: 06.01.2012, 17:49 [ Скачать с сервера (235.0Kb) ]
Категория: Радиоэлектроника | Добавил: Lakomka
Просмотров: 939 | Загрузок: 130
Рейтинг: 0.0/0

форма входа

Логин:
Пароль:

объявления

Вы задумывались о том, что Coca-Cola присутствует во всех странах мира, кроме трех? Благодаря чему секретный состав знаменитого напитка, первоначально задуманного как лекарство от похмелья, завоевал весь мир? И почему в наше время именно гигантские корпорации стали мишенью критики?
Настоящее пособие представляет собой краткое изложение ответов на экзаменационные вопросы. Структура пособия соответствует общегосударственному образовательному стандарту по дисциплине «Психология и педагогика». Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету по данному предмету и усп...
Наш современник по дороге домой попадает в автомобильную катастрофу. Придя в себя, он обнаруживает, что оказался в теле восемнадцатилетнего прапорщика, а на дворе май 1917 года – идет мировая война. Постепенно вживаясь в реалии начала двадцатого века, главный герой понимает, что оказался в параллельном мире, где история свернула с проторенной дорож...
Пятеро джентльменов решили организовать клуб «Вторник». Каждый вторник они собираются и рассказывают истории про загадочные преступления, а затем сообща пытаются найти разгадку. Однако, когда в клубе появляется шестой участник – мисс Марпл, – умным и интеллигентным джентльменам приходится с неохотой признать, что милая старушка даст им сто очков вп...

объявления

Отчёт по учебной практике по геодезии

[Геодезия, геология] - скачать

ИМПУЛЬСНЫЙ УСИЛИТЕЛЬ

[Радиоэлектроника] - скачать

Мінерологія нікеленосних пор вивітрювання.

[Геодезия, геология] - скачать

АНАЛИЗ СФЕРИЧЕСКОГО ПЬЕЗОКЕРАМИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ

[Радиоэлектроника] - скачать

Физико-механические свойства мёрзлых грунтов.

[Геодезия, геология] - скачать