Радиоэлектроника скачать реферат

[ книги ] [ рефераты ] [ тесты ] [ ридеры ] [ регистрация ] [ вход ]
[ новинки книг ] [ категории книг ] [ правила ]

Избыточные коды скачать реферат

Вступление.

Известно, что каналы, по которым передается информация, практически никогда не бывают идеальными (каналами без помех). В них почти всегда присутствуют помехи. Отличие лишь в уровне помех и их спектральном составе. Помехи в каналах образуются по различным причинам, но результат воздействия их на передаваемую информацию всегда один – информация теряется (искажается).

Для предотвращения потерь информации в канале были придуманы избыточные коды (коды с избыточностью). Преимущество избыточного кода в том, что при приеме его с искажением (количество искаженных символов зависит от степени избыточности и структуры кода) информация может быть восстановлена на приемнике.

Существуют избыточные коды с обнаружением (они только обнаруживают ошибку) и коды с исправлением (эти коды обнаруживают место ошибки и исправляют ее).

Для различных помех в канале существуют различные по своей структуре и избыточности коды. Обычно избыточность кодов находится в пределах 10…60% или чуть больше. Избыточность 1/4 (25%) применяется при записи информации на лазерные диски и в системах цифрового спутникового ТВ.

Классификация кодов.

Известно большое число помехоустойчивых кодов, которые классифицируются по различным признакам. По­мехоустойчивые коды можно разделить на два больших класса: блочные и непрерывные. При блочном кодировании последова­тельность элементарных сообщений источника разбивается на от­резки и каждому отрезку ставится в соответствие определенная последовательность (блок) кодовых символов, называемая обыч­но кодовой комбинацией. Множество всех кодовых комбинаций, возможных при данном способе блочного кодирования, и есть блочный код.

Длина блока может быть как постоянной, так и переменной. Различают равномерные и неравномерные блоч­ные коды. Помехоустойчивые коды являются, как правило, рав­номерными.

Блочные коды бывают разделимыми и неразделимыми. К разделимым относятся коды, в которых символы по их назначению могут быть разделены на информационные символы, несущие ин­формацию о сообщениях и проверочные. Такие коды обознача­ются как (n, k), где n- длина кода, k- число информационных символов. Число комбинаций в коде не превышает 2^k. К нераздели­мым относятся коды, символы которых нельзя разделить по их назначению на информационные и проверочные.

Коды с постоянным весом характеризуются тем, что их кодо­вые комбинации содержат одинаковое число единиц: Примером такого кода является код “3 из 7”, в котором каждая кодовая комбинация содержит три единицы и четыре нуля (стандартных телеграфный код № 3).

К
оды с постоянным весом позволяют обнаружить все ошибки кратности q=1,...,n за исключением случаев, когда число еди­ниц, перешедших в нули, равно числу нулей, перешедших в еди­ницы. В полностью асимметричных каналах, в ко­торых имеет место только один вид ошибок (преобразование ну­лей в единицы или единиц в нули), такой код дозволяет обнару­жить все ошибки. В симметричных каналах вероятность необна­руженной ошибки можно определить как вероятность одновременного искажения одной единицы и одного нуля:

где Pош вероятность искажения символа.

Среди разделимых кодов различают линейные и нелинейные. К линейным относятся коды, в которых поразрядная сумма по модулю 2 любых двух кодовых слов также является кодовым словом. Линейный код называется систематическим, если первые k символов его любой кодовой комбинации являются информаци­онными, остальные (n- k) символов — проверочными.

С
реди линейных систематических кодов наиболее простой код (n, n-k), содержащий один проверочный символ, ко­торый равен сумме по модулю 2 всех информационных символов. Этот код, называемый кодом с проверкой на четность, позволяет обнаружить все сочетания ошибок нечетной кратности. Вероятность необнаруженной ошибки в первом приближении можно определить как вероятность искажения двух символов:

Подклассом линейных кодов являются циклические коды. Они характеризуются тем, что все наборы, образованные циклической перестановкой любой кодовой комбинации, являются также кодо­выми комбинациями. Это свойство позволяет в значительной сте­пени упростить кодирующее и декодирующее устройства, особен­но при обнаружении ошибок и исправлении одиночной ошибки. Примерами циклических кодов являются коды Хэмминга, коды Боуза - Чоудхури - Хоквингема (БЧХ — коды) и др.

Примером нелинейного кода является код Бергера, у которо­го проверочные символы представляют двоичную запись числа единиц в последовательности информационных символов. Напри­мер, таким является код: 00000; 00101; 01001; O111O; 10001; 10110; 11010; 11111. Коды Бергера применяются в асиммет­ричных каналах. В симметричных каналах они обнаруживают все одиночные ошибки и некоторую часть многократных.

Непрерывные коды характеризуются тем, что операции коди­рования и декодирования производятся над непрерывной последо­вательностью символов без разбиения ее на блоки. Среди непре­рывных наиболее применимы сверточные коды.

Как известно различают каналы с независимыми и группирующимися ошибками. Соответственно помехоустойчивые коды можно разбить на два класса: исправляющие независимые ошибки и исправляющие пакеты ошибок. Далее будут рассматриваться в основном коды, исправляющие независимые ошибки. Это объясняется тем, что хотя для исправления пакетов ошибок раз­работано много эффективных кодов, на практике целесообразнее использовать коды, исправляющие независимые ошибки вместе с устройством перемежения символов или декорреляции ошибок. При этом символы кодовой комбинации не передаются друг за другом, перемешиваются с символами других кодовых комбинаций. Ес­ли интервал между символами, принадлежащими одной кодовой комбинации, сделать больше чем “память” канала, то ошибки в пределах кодовой комбинации можно считать независимыми, что и позволяет использовать коды, исправляющие независимые ошибки.

Блочные коды. Построение кодеков.

Линейные коды.

Из определения следует, что любой линейный код (п, k) мож­но получить из k линейно независимых кодовых комбинаций пу­тем их посимвольного суммирования по модулю 2 в различных сочетаниях. Исходные линейно независимые кодовые комбина­ции называются базисными.

Представим базисные кодовые комбинации в виде матрицы размерностью nXk

(7.7)

В теории кодирования она называется порождающей. Тогда про­цесс кодирования заключается в выполнении операции: B=AG,

где А- вектор размерностью k, соответствующий сообщению, В- вектор размерностью п, соответствующий кодовой комби­нации.

Т
аким образом, порождающая матрица (7.7) содержит всю не­обходимую для кодирования информацию. Она должна хранить­ся в памяти кодирующего устройства. Для двоичного кода объем памяти равен kXn двоичных символов. При табличном задании кода кодирующее устройство должно запоминать

двоичных символов.

Добавлен: 06.01.2012, 16:36 [ Скачать с сервера (482.5Kb) ]
Категория: Радиоэлектроника
Просмотров: 723 | Загрузок: 104
Рейтинг: 0.0/0

форма входа

Логин:
Пароль:

объявления

Оперировавший на рынке в 1950-1960-е годы, Дарвас ныне признан пионером технического анализа и одним из лучших трейдеров второй половины XX века. Танцор по профессии, он разработал уникальный метод выбора акций именно для непрофессионалов, не требовавший глубокого погружения в состояние дел компаний.
Книга содержит подробный рассказ о методе...
Развитие клиента, или Customer Development – сравнительно новый подход к построению компаний. Он позволяет предпринимателю обходиться меньшими затратами и почти не зависеть от интуиции. Как? Включив клиента с самого начала во все основные бизнес-решения – в стратегию, маркетинг и разработку продукта. Эта книга – краткая и емкая методическое руковод...
Новая реальность уже совсем не такая, как прежде, и правила выживания в ней уже не те. Цивилизация сделала крутой разворот от натуральной природы человека в сторону техногенного общества. И это очень сильно сказывается на людях – они уже не столько свободные индивиды, сколько элементы системы, значительная часть энергии и сознания которых подконтро...
Много ли нужно для счастья? Это каждый решает сам. Одних амбиции заставляют идти по головам, добиваясь вожделенного кресла в правительстве, другим достаточно скромной дачки в далекой деревне. Кто-то хочет выиграть Олимпийские игры, а кому-то хватает простого черного пояса. Есть люди, желающие править миром, и люди, мечтающие управлять своей судьбой...

объявления

Математическое моделирование биполярных транзисторов типа p-n-p

[Радиоэлектроника] - скачать

Алгебраические числа

[Математика] - скачать

Методы построения эмпирического знания в теории и методике физического воспитания

[Физкультура и Спорт] - скачать

Алюминий-литиевые сплавы

[Физика] - скачать

"Государство" Платона Том 3, гл. 8

[Философия] - скачать