Радиоэлектроника скачать реферат

[ книги ] [ рефераты ] [ новости ] [ ридеры ] [ регистрация ] [ вход ]
[ новинки книг ] [ категории книг ] [ правила ]

Измерение параметров АЦП скачать реферат

Введение

Цифро-аналоговые и аналого-цифровые преобразовате­ли АЦП находят .широкое применение в различ­ных областях современной науки и техники. Они являют­ся неотъемлемой составной частью цифровых измери­тельных приборов, систем преобразования и отображе­ния информации, программируемых источников питания, индикаторов на электронно-лучевых трубках, радиоло­кационных систем, установок для контроля элементов и микросхем, а также важными компонентами различных автоматических систем контроля и управления, устройств ввода—вывода информации ЭВМ. На их основе строят преобразователи и генераторы практически любых функ­ций, цифроуправляемые аналоговые регистрирующие устройства, корреляторы, анализаторы спектра и т. д. Велики перспективы использования быстродействующих преобразователей в телеметрии и телевидении. Несом­ненно, серийный выпуск малогабаритных и относительно дешевых АЦП еще более усилит тенденцию про­никновения метода дискретно-непрерывного преобразо­вания в сферу науки и техники. Одним из стимулов раз­вития цифро-аналоговых и аналого-цифровых преобразо­вателей в интегральном исполнении в последнее время является широкое распространение микропроцессоров и методов цифровой обработки данных. В свою очередь потребность в АЦП стимулирует их разработку и производство с новыми, более совершенными характе­ристиками. В настоящее время применяют три вида тех­нологии производства АЦП: модульную, гибрид­ную и полупроводниковую. При этом доля производства полупроводниковых интегральных схем (ИМС ЦАП и ИМС АЦП) в общем объеме их выпуска непрерывно возрастает и в недалеком будущем, по-видимому, в мо­дульном и гибридном исполнениях будут выпускаться лишь сверхточные и сверхбыстродействующие преобра­зователи с достаточно большой рассеиваемой мощно­стью.

В данной главе рассматриваются основные структу­ры, характеристики и методы контроля интегральных микросхем АЦП.
1 Основные структуры ИМС АЦП

Рис. 1. Обобщенная структурная схема АЦП

Обобщенная структурная схема АЦП (рис.1) представляет собой дискретизирующее устройство ДУ, тактирующее работу кванту­ющего КвУ и кодирующего КдУ устройств. На вход квантующего устройства по­ступает преобразуемый сиг­нал x(t), а с выхода кодиру­ющего устройства снимается дискретный сигнал ДС, кото­рый для АЦП в интеграль­ном исполнении обыччно име­ет форму двоичного параллельного кода. В результате равномерного квантования мгновенное значение xi не­прерывной величины x(t) представляется в виде конеч­ного числа п ступеней квантования Δх:

Xi=nΔx=x ±Δk,

где Δk - погрешность квантования, обусловленная тем, что преобразуемая величина х может содержать нецелое число п ступеней квантования Δх.

Максимально возможная погрешность квантования (погрешность дискретности) определяется ступенью квантования, т. е.

Δkmax= Δx

Для известного диапазона xmax максимально возмож­ное число дискретных значений преобразуемого сигнала х (включая х==0)

nmax=(xmax/ Δx+1)

При этом, как правило, погрешность квантования не должна превышать общую погрешность преобразования.

Следовательно, если известно значение допустимой отно­сительной погрешности преобразования γmaх, то при опре­делении ступени квантования необходимо учитывать со­отношение

Δx ≤ (γmaх /100)*xmax

Кроме того, следует учитывать, что АЦП обладают определенным порогом чувствительности Хп.ч, т. е. спо­собностью вызывать изменение выходной информации преобразователя при воздействии на его вход наимень­шего значения преобразуемого сигнала. Поэтому значе­ние Δx должно превышать Хп.ч и удовлетворять неравен­ству

Хп.ч < Δx ≤ (γmaх /100)*xmax

Реализацию обобщенной структуры можно осущест­вить различными способами, которые рассмотрены ниже. Независимо от способа построения АЦП всем им прису­ща методическая погрешность, обусловленная погрешно­стью квантования Δx.

В зависимости от области применения АЦП их основ­ные характеристики (точность, разрешающая способ­ность, быстродействие) могут существенно отличаться. При использовании АЦП в измерительных устройствах главную роль играет точность преобразования, а быстро­действие этих устройств ограничено реальной скоростью регистрации результата измерения. При использовании АЦП в качестве устройства ввода измерительной инфор­мации в ЭВМ от него требуется быстродействие в боль­шей степени.

Широкое применение АЦП в различных областях на­уки и техники явилось предпосылкой создания разных структур АЦП, каждая из которых позволяет решить определенные задачи, предъявляемые к АЦП в каждом конкретном случае. Из всего многообразия существую­щих методов аналого-цифрового преобразования в интегральной технологии нашли применение в основном три:

1) метод прямого (параллельного) преобразования;

2) метод последовательного приближения (поразряд­ного уравновешивания);

3) метод интегрирования.

Каждый из этих методов позволяет добиться наилуч­ших параметров (быстродействия, разрешающей способ­ности, помехоустойчивости и т. д.). Потребность в АЦП с оптимальными параметрами или с отдельными экстре­мальными параметрами обусловила появление структур преобразователей, использующих комбинацию перечис­ленных методов. Рассмотрим структурные схемы АЦП, нашедших наибольшее распространение в интегральной технологии.

В АЦП с параллельным преобразованием входной сигнал прикладывается одновременно ко входам всех компараторов. В каждом компараторе он сравнивается с опорным сигналом, значение которого эквивалентно определенной кодовой комбинации. Опорный сигнал сни­мается с узлов резистивного делителя, питаемого от ис­точника опорного напряжения. Число возможных кодо­вых комбинаций (а следовательно, число компараторов) равно 2m—1, где т—число разрядов АЦП. АЦП прямо­го преобразования обладают самым высоким быстродей­ствием среди других типов АЦП, определяемым быстро­действием компараторов и задержками в логическом де­шифраторе. Недостатком их является необходимость в большом количестве компараторов. Так, для 8-разрядно­го АЦП требуется 255 компараторов. Это затрудняет реализацию многоразрядных (свыше 6—8-го разрядов) АЦП в интегральном исполнении. Кроме того, точность преобразования ограничивается точностью и стабильно­стью каждого компаратора и резистивного делителя. Тем не менее на основе данного принципа строят наиболее быстродействующие АЦП со временем преобразования в пределах десятков и даже единиц наносекунд, но огра­ниченной разрядности (не более шести разрядов).

АЦП последовательного приближения имеет несколь­ко меньшее быстродействие, но существенно большую разрядность (разрешающую способность). В нем исполь­зуется только один компаратор, максимальное число срабатываний которого за один цикл измерения не превы­шает числа разрядов преобразователя. Суть такого ме­тода преобразования заключается в последовательном сравнении входного преобразуемого напряжения Us с выходным напряжением образцового ЦАП, изменяю­щимся по закону последовательного приближения до момента наступления их равенства (с погрешностью дискретности). Входной сигнал Ux с помощью аналогового компаратора КН сравни­вается с выходным сигналом образцового ЦАП, который управляется в свою очередь регистром последовательно­го приближения РгПП. При запуске схемы РгПП уста­навливается генератором Г в исходное состояние. При этом на выходе ЦАП формируется напряжение, соответ­ствующее половине диапазона преобразования, что обес­печивается включением его старшего разряда 100 ... 0. Если Us меньше выходного напряжения ЦАП, то стар­ший разряд выключается, включается второй по стар­шинству разряд (на входе ЦАП код 0100...0), что соот­ветствует 'формированию на выходе ЦАП напряжения, равного половине предыду­щего. В случае если Их пре­вышает это напряжение, то дополнительно включается третий разряд (на входе ЦАП код 0110...0), что при­водит к увеличению выходного напряжения ЦАП в 1,5 раза. При этом выходное напряжение ЦАП вновь сравни­вается с напряжением Ux и т. д. Описанная процедура повторяется т раз (где m—число разрядов АЦП). В итоге на выходе ЦАП формируется напряжение, отли­чающееся от входного преобразуемого напряжения Ux не более чем на единицу младшего разряда ЦАП. Результат преобразования напряжения Ux в его цифровой эквива­лент—параллельный двоичный код Nx—снимается с выхода РгПП. Очевидно, погрешность преобразования и быстродействие такого устройства определяются в основ­ном параметрами ЦАП (разрешающей способностью, ли­нейностью, быстродействием) и компаратора (порогом чувствительности, быстродействием). Преимуществом рассмотренной схемы является возможность построения многоразрядных (до 12 разрядов и выше) преобразова­телей сравнительно высокого быстродействия (время 'пре­образования 'порядка нескольких сот наносекунд). На ос­нове метода последовательного приближения реализова­на и серийно выпускается ИМС 12-разрядного АЦП К572ПВ1 с временем преобразования 100 мкс.

Наиболее простыми по структуре среди интегрирую­щих преобразователей являются АЦП с преобразовани­ем напряжения в частоту, построенные на базе интегри­рующего усилителя и аналогового компаратора. Погреш­ность их преобразования определяется нестабильностью порога срабатывания компаратора и постоянной времени интегратора. Более высокими метрологическими харак­теристиками обладают АЦП, реализованные по принци­пу двойного интегрирования (например, ИМС, 11-раз­рядного АЦП К572ПВ2), поскольку при этом практиче­ски удается исключить влияние на погрешность преобра­зования нестабильности порога срабатывания компара­тора и постоянной времени интегратора.

Анализ описанных методов преобразования и струк­турных схем АЦП позволяет сделать вывод, что наи­большим быстродействием обладают АЦП прямого пре­образования, однако их разрядность невысока. АЦП поразрядного уравновешивания, обладая средним быст­родействием, дают возможность получить достаточно высокую разрешающую способность. Но помехозащи­щенность тех и других преобразователей невысока. АЦП интегрирующего типа, обладая наименьшим быстродей­ствием, обеспечивают наибольшую помехозащищенность и точность преобразования.
2. Характеристики ИМС АЦП

Основными параметрами, характеризующими ИМС АЦП, являются разрешающая способность, нели­нейность, коэффициент преобразования, погрешность полной шкалы, смещение нуля, абсолютная погрешность, дифференциальная нелинейность, монотонность, время преобразования.

Разрешающая способность определяется числом дис­кретных значений выходного сигнала преобразователя, составляющих его предел преобразования. Чем больше число дискретных значений, тем выше разрешающая способность преобразователя. Двоичный m-разрядный преобразователь имеет 2m дискретных значений, а его разрешающая способность равна 1/2m. В преобразовате­лях различают наименьший и наибольший значащие раз­ряды. В двоичной системе кодирования наименьший зна­чащий разряд — это разряд, имеющий наименьший вес. Вес младшего разряда определяет разрешающую способ­ность. Наибольший значащий разряд соответствует наибольшему весу. В двоичной системе кодирования наи­больший значащий разряд имеет вес 1/2 номинального значения максимально возможного выходного сигнала при всех включенных разрядах (полной шкалы преобра­зования).

Добавлен: 06.01.2012, 16:37 [ Скачать с сервера (258.0 Kb) ]
Категория: Радиоэлектроника
Просмотров: 855 | Загрузок: 129
Рейтинг: 0.0/0

форма входа

Логин:
Пароль:

объявления

Компания многолетних друзей, собравшись на Рождество в уютной нью-йоркской квартире, планирует предстоящий отпуск и останавливает свой выбор на французском курорте Сен-Тропе. Каждый предвкушает счастливые дни у моря, безмятежную праздную жизнь на шикарной вилле…
Кормак Маккарти – современный американский классик главного калибра, лауреат Макартуровской стипендии «За гениальность», мастер сложных переживаний и нестандартного синтаксиса, хорошо известный нашему читателю романами «Старикам тут не место» (фильм братьев Коэн по этой книге получил четыре «Оскара») и «Дорога» (получил Пулицеровскую премию ...
Он не ожидал ничего сверхъестественного от обычной командировки в Питер. Но все моментально вышло из-под контроля, когда Глеб Звоницкий неожиданно встретил Катю, ту самую Катю… Когда-то Глеб служил в охране ее отца, губернатора Белоярского края, а потом ушел с работы. Катя всегда была немного «не от мира сего», и Глеб по привычке решил было, что сн...
Люди, выдавленные своим миром, чужие для него, появляются очень редко. За все время, прошедшее после Смуты, из порталов между мирами появилось всего семнадцать человек. Церковь брала их под свое крыло и выпускала в мир тогда, когда считала их полностью готовыми к предстоящим им испытаниям. Среди них были паладины, маги и даже один пророк. И все они...

объявления

Кодоимпульсные ТИС

[Радиоэлектроника] - скачать

Азот и фосфор

[Химия] - скачать

Оказание специализированной помощи пострадавшему в результате боевых действий

[Медицина] - скачать

Белокаменное зодчество Владимиро-Суздальской земли в 12-13 веках

[Архитектура] - скачать

Задача обработки решеток

[Радиоэлектроника] - скачать

- Зачем нужно продвижение сайта в интернете
- Особенности машинной вышивки
- Полимерные полы
- Безопасность грузоперевозок по России
- Серверы Dell PowerEdge
- Обувь для купания в море
- Герцен - родоначальник русского социализма
- Характеристики керамических блоков
- Алкоголизм и его стадии
- Как разнообразить интимную жизнь
- На первом фестивале сериалов «Пилот» победил проект о 90-х
- Какие достоинства у натяжных потолков?
- Гидрораспределители
- Чем полезна питахайя
- Как научиться работать в программе «1С: Бухгалтерия»
- Что такое клановые онлайн игры
- Отдых в Египте
- Банкет с полным обслуживанием
- Самогоноварение
- Из-за чего возникает шум в стиральных машинах?
- Bлияниe нayки нa литepaтypy
- Литepaтypoвeдeниe и иcкyccтвoзнaние
- Украинские достопримечательности: Чернигов и окрестности
- Черкассы: достопримечательности и описание
- Набережная Харькова: история, современность, достопримечательности
- Ивано-Франковск: достопримечательности города
- Хмельницкий (город): достопримечательности
- Достопримечательности Винницы
- Ровно — один из древних украинских городов
- Филocoфcкo-иcтopичecкaя кoнцeпция poмaнa «Пeтepбypг» Aндpeя Бeлoгo
- Poмaн «Пeтepбypг» Aндpeя Бeлoгo: o Poccии и peвoлюции
- Виды бейджей. Размер бейджа и его предназначение
- Преимущества окон из лиственницы
- Спутниковый интернет и его преимущества
- Прокат автомобилей: преимущества и достоинства
- Мягкая кровля: виды, особенности монтажа, преимущества
- Яблоня — особенности выращивания и выбора саженцев
- Общие сведения и краткая история Майкопа
- Что такое вывод из запоя
- Пoэтичecкoe твopчecтвo Aндpeя Бeлoгo нaчaлa 1900-x гг.
- «Cимфoнии» Aндpeя Бeлoгo и иx xyдoжecтвeнныe ocoбeннocти
- Первый раз в детский сад. Медицинская карта для детского сада
- Что такое лотки для теплотрасс? Какие функции они выполняют?
- Пpeкpacный и cтpaшный миp в пoэзии A. A. Блoкa
- Pacцвeт пoэтичecкoгo тaлaнтa A. A. Блoкa в 1910-e гг.
- Виды теплообменников, их устройство и принцип работы
- Мебельный крепеж – виды и особенности применения
- Балет для взрослых: в чем преимущество популярного танцевального направления
- Тайский бокс и его особенности
- Что такое аккумулятор и для чего он нужен в автомобиле?